Facebook es un sitio web gratuito de redes sociales creado por Mark Zuckerberg. Originalmente era un sitio para estudiantes de la Universidad de Harvard, pero actualmente está abierto a cualquier persona que tenga una cuenta de correo electrónico. Los usuarios pueden participar en una o más redes sociales, en relación con su situación académica, su lugar de trabajo o región geográfica.
Ha recibido mucha atención en la blogosfera y en los medios de comunicación al convertirse en una plataforma sobre la que terceros pueden desarrollar aplicaciones y hacer negocio a partir de la red social. A pesar de ello, existe la preocupación acerca de su posible modelo de negocio, dado que los resultados en publicidad se han revelado como muy pobres.[cita requerida]
A mediados de 2007 lanzó su versión en francés, alemán y español para impulsar su expansión fuera de Estados Unidos, ya que sus usuarios se concentran en Estados Unidos, Canadá y Gran Bretaña.
FACEBOOK
jueves, 15 de octubre de 2009
jueves, 27 de agosto de 2009
INSECTICIDAS NATURALES
Los productos sintéticos destinados a controlar plagas y enfermedades en los vegetales han tenido un rol muy marcado en el incremento de la producción agrícola. Sin embargo el uso continuo e indiscriminado de estas sustancias, no sólo ha causado enfermedades (Waterhouse, 1996) y muertes por envenenamiento a corto y largo plazo, sino también ha afectado al medio ambiente, acumulándose por bioconcentración en los distintos eslabones de la cadena alimenticia, en el suelo y en el agua. Son responsables además de la resistencia (Bourguet, 2000) a insecticidas por parte de los insectos, sin por ello restar importancia a la destrucción de parásitos, predadores naturales y polinizadores, entre los otros tantos integrantes del ecosistema (Freemark, 1995), que han visto alterado su ciclo de vida a causa de estos productos. El hombre depende del consumo directo de las plantas tanto vegetales, cultivos, cereales como de la obtención de sus productos. Anualmente, una tercera parte de la producción de alimentos se ve destruida por pestes de cultivos y productos almacenados.(Ahmed, 1984), por lo cual se hace imprescindible el estudio de nuevas vías de control de plagas. Las plantas, en conjunto, producen mas de 100.000 sustancias de bajo peso molecular conocidas también como metabolitos secundarios. Estos son, normalmente, no-esenciales para el proceso metabólico básico de la planta. Entre ellos se encuentran terpenos, lignanos, alcaloides, azúcares, esteroides, ácidos grasos, etc. Semejante diversidad química es consecuencia del proceso evolutivo que ha llevado a la selección de especies con mejores defensas contra el ataque microbiano, o la predación de insectos y animales (Dixon, 2001). Hoy en día se sabe que estos metabolitos secundarios tienen un rol importante en el mecanismo defensivo de las plantas (Jacobson, 1989). Por lo tanto en los últimos años se está retornando al uso de las plantas como fuente de pesticidas mas seguros para el medio ambiente y la salud humana (Ottaway, 2001; Mansaray, 2000). Los pesticidas pueden ser clasificados de acuerdo con el tipo de organismo frente a los cuales son eficaces: funguicidas, herbicidas, insecticidas, moluscicidas, nematicidas, rodenticidas (Evans, 1991). Sin lugar a dudas los insecticidas naturales a partir de extractos vegetales constituyen una muy interesante alternativa de control de insectos además de que sólo se han evaluado muy pocas plantas en relación a la fuente natural que ofrece el planeta, por lo que las perspectivas futuras en cuanto a investigación, son aun mayores.
partir de la necesidad por encontrar una nueva alternativa natural para el control de insectos plagas y reemplazar así los pesticidas sintéticos aparecen los insecticidas botánicos ofreciendo seguridad para el medio ambiente y una eficiente opción agronómica. (Borembaum, 1989).
Muchas plantas son capaces de sintetizar metabolitos secundarios que poseen propiedades biológicas con importancia contra insectos plagas. (Matthews, 1993; Enriz, 2000; Calderón, 2001; Céspedes, 2001; Gonzalez-Coloma; 2002). La selección de plantas que contengan metabolitos secundarios capaces de ser utilizados como insecticidas naturales deben ser de fácil cultivo y con principios activos potentes, con alta estabilidad química y de optima producción.
Las principales compuestos aislados de plantas usadas desde hace mucho tiempo para fines insecticidas son:
La rotenona, extraída de una planta llamada derris, (Derris elliptica y Lonchocarpus utilis, Fam. Leguminosae) (Figura 1) es un flavonoide que se extrae de las raíces de estas plantas. De la primera se puede obtener un 13% de rotenona mientras que de la segunda un 5%. Derris es nativa de los trópicos orientales, mientras que Lonchocarpus es del hemisferio occidental. Este compuesto es un insecticida de contacto e ingestión, y repelente. Su modo de acción implica una inhibición del transporte de electrones a nivel de mitocondrias bloqueando la fosforilación del ADP a ATP. Por esto se dice que actúa inhibiendo el metabolismo del insecto. Los síntomas que presentan los insectos intoxicados con rotenona son: disminución del consumo de oxigeno, depresión en la respiración y ataxia que provocan convulsiones y conducen finalmente a la parálisis y muerte del insecto por paro respiratorio
Figura 1: Estructura molecular de Rotenona
Las piretrinas (Figura 2) son esteres con propiedades insecticida obtenidas de las flores del piretro (Chrysantemum cinaerifolium, Fam Compositae). Los componentes de esta planta con actividad insecticida reconocida son seis ésteres, formados por la combinación de los ácidos crisantémico y pirétrico y los alcoholes piretrolona, cinerolona y jasmolona. Estos compuestos atacan tanto el sistema nervioso central como el periférico lo que ocasiona descargas repetidas, seguidas de convulsiones. Diversos estudios han demostrado que estos compuestos taponan las entradas de los iones sodio a los canales, generando que dichos canales sean afectados alterando la conductividad del ión en tránsito. Sin lugar a dudas la característica más importante de estos compuestos es su alto efecto irritante o "knock down" que hace que el insecto apenas entre en contacto con la superficie tratada deje de alimentarse y caiga. Las piretrinas son el mejor ejemplo de la copia y modificación de moléculas en laboratorio porque dieron origen a la familia de los piretroides
La nicotina (Figura 3) es un alcaloide derivado especialmente de tabaco (Nicotiana tabacum Fam. Solanaceae). Sus propiedades insecticidas fueron reconocidas en la primera mitad del siglo XVI. Este compuesto no se encuentra en la planta en forma libre sino que formando maleatos y citratos. La nicotina es básicamente un insecticida de contacto no persistente. Su modo de acción consiste en mimetizar la acetilcolina al combinarse con su receptor en la membrana postsináptica de la unión neuromuscular. El receptor acetilcolínico, es un sitio de acción de la membrana postsináptica que reacciona con la acetilcolina y altera la permeabilidad de la membrana; la actividad de la nicotina ocasiona la generación de nuevos impulsos que provocan contracciones espasmódicas, convulsiones y finalmente la muerte. Hoy en día se encuentran en el mercado un grupo de insecticidas conocidos como neonicotinoides que son copias sintéticas o derivadas de la estructura de la nicotina como son Imidacloprid, Thiacloprid, Nitempiram, Acetamiprid y Thiamethoxam entre otros.
Figura 3: Estructura molecular de la Nicotina
Otra planta utilizada como insecticida es la Anabasis aphylla L. (Fam. Chenopodiaceae). Su principio activo denominado anabasina o neonicotina es similar a la nicotina y actúa de la misma forma. Esta planta crece en Asia Central (Duke, 1990).
La rianodina se obtiene de los tallos y raices de una planta originaria de América del Sur conocida como Riania speciosa (Fam. Flacourtiaceae). De esta planta se obtiene una serie de alcaloides, siendo el mas importante la rianodina. Este alcaloide actúa por contacto y vía estomacal afectando directamente a los músculos impidiendo su contracción y ocasionando parálisis. La planta es utilizada para combatir larvas de diversos Lepidopteros que atacan frutos y particularmente la plaga del maíz europeo
Agregar a favoritos Invitar a un amigo Ayuda Português ¡Regístrese! | Iniciar sesión En el índice En la web Busqueda avanzada
Monografías
Nuevas
Publicar
Blogs
Foros
Monografias.com > Agricultura y Ganaderia
Descargar Imprimir Comentar este trabajo Agregar a favoritos Enviar a un amigo Trabajos relacionados Anuncios Google
Automovil Fiat Locker
La naturaleza hará cola para ver los nuevos Palio e Idea Adventure.
www.fiat.com.co
Triaso Equipos
Fabricación de Plantas de Asfalto Excelentes precios
www.triaso.com.mx
Eval de Impacto Ambiental
Excelente Prog. de Especialización p/ tu Formación Profesional.
UTadeo.edu.coInsecticidas naturales
Enviado por emaggi
Origen de los pesticidas Naturales
Insecticidas Naturales a partir de Extractos Vegetales
Alcaloides Insecticidas
Insecticidas Naturales de Uso Popular
Conclusiones
Bibliografía
ORIGEN DE LOS PESTICIDAS NATURALES
Los productos sintéticos destinados a controlar plagas y enfermedades en los vegetales han tenido un rol muy marcado en el incremento de la producción agrícola. Sin embargo el uso continuo e indiscriminado de estas sustancias, no sólo ha causado enfermedades (Waterhouse, 1996) y muertes por envenenamiento a corto y largo plazo, sino también ha afectado al medio ambiente, acumulándose por bioconcentración en los distintos eslabones de la cadena alimenticia, en el suelo y en el agua. Son responsables además de la resistencia (Bourguet, 2000) a insecticidas por parte de los insectos, sin por ello restar importancia a la destrucción de parásitos, predadores naturales y polinizadores, entre los otros tantos integrantes del ecosistema (Freemark, 1995), que han visto alterado su ciclo de vida a causa de estos productos. El hombre depende del consumo directo de las plantas tanto vegetales, cultivos, cereales como de la obtención de sus productos. Anualmente, una tercera parte de la producción de alimentos se ve destruida por pestes de cultivos y productos almacenados.(Ahmed, 1984), por lo cual se hace imprescindible el estudio de nuevas vías de control de plagas. Las plantas, en conjunto, producen mas de 100.000 sustancias de bajo peso molecular conocidas también como metabolitos secundarios. Estos son, normalmente, no-esenciales para el proceso metabólico básico de la planta. Entre ellos se encuentran terpenos, lignanos, alcaloides, azúcares, esteroides, ácidos grasos, etc. Semejante diversidad química es consecuencia del proceso evolutivo que ha llevado a la selección de especies con mejores defensas contra el ataque microbiano, o la predación de insectos y animales (Dixon, 2001). Hoy en día se sabe que estos metabolitos secundarios tienen un rol importante en el mecanismo defensivo de las plantas (Jacobson, 1989). Por lo tanto en los últimos años se está retornando al uso de las plantas como fuente de pesticidas mas seguros para el medio ambiente y la salud humana (Ottaway, 2001; Mansaray, 2000). Los pesticidas pueden ser clasificados de acuerdo con el tipo de organismo frente a los cuales son eficaces: funguicidas, herbicidas, insecticidas, moluscicidas, nematicidas, rodenticidas (Evans, 1991). Sin lugar a dudas los insecticidas naturales a partir de extractos vegetales constituyen una muy interesante alternativa de control de insectos además de que sólo se han evaluado muy pocas plantas en relación a la fuente natural que ofrece el planeta, por lo que las perspectivas futuras en cuanto a investigación, son aun mayores.
INSECTICIDAS NATURALES A PARTIR DE EXTRACTOS VEGETALES
A partir de la necesidad por encontrar una nueva alternativa natural para el control de insectos plagas y reemplazar así los pesticidas sintéticos aparecen los insecticidas botánicos ofreciendo seguridad para el medio ambiente y una eficiente opción agronómica. (Borembaum, 1989).
Muchas plantas son capaces de sintetizar metabolitos secundarios que poseen propiedades biológicas con importancia contra insectos plagas. (Matthews, 1993; Enriz, 2000; Calderón, 2001; Céspedes, 2001; Gonzalez-Coloma; 2002). La selección de plantas que contengan metabolitos secundarios capaces de ser utilizados como insecticidas naturales deben ser de fácil cultivo y con principios activos potentes, con alta estabilidad química y de optima producción.
Las principales compuestos aislados de plantas usadas desde hace mucho tiempo para fines insecticidas son:
La rotenona, extraída de una planta llamada derris, (Derris elliptica y Lonchocarpus utilis, Fam. Leguminosae) (Figura 1) es un flavonoide que se extrae de las raíces de estas plantas. De la primera se puede obtener un 13% de rotenona mientras que de la segunda un 5%. Derris es nativa de los trópicos orientales, mientras que Lonchocarpus es del hemisferio occidental. Este compuesto es un insecticida de contacto e ingestión, y repelente. Su modo de acción implica una inhibición del transporte de electrones a nivel de mitocondrias bloqueando la fosforilación del ADP a ATP. Por esto se dice que actúa inhibiendo el metabolismo del insecto. Los síntomas que presentan los insectos intoxicados con rotenona son: disminución del consumo de oxigeno, depresión en la respiración y ataxia que provocan convulsiones y conducen finalmente a la parálisis y muerte del insecto por paro respiratorio (Silva, 2002)
Para ver el gráfico seleccione la opción "Descargar" del menú superior
Figura 1: Estructura molecular de Rotenona
Las piretrinas (Figura 2) son esteres con propiedades insecticida obtenidas de las flores del piretro (Chrysantemum cinaerifolium, Fam Compositae). Los componentes de esta planta con actividad insecticida reconocida son seis ésteres, formados por la combinación de los ácidos crisantémico y pirétrico y los alcoholes piretrolona, cinerolona y jasmolona. Estos compuestos atacan tanto el sistema nervioso central como el periférico lo que ocasiona descargas repetidas, seguidas de convulsiones. Diversos estudios han demostrado que estos compuestos taponan las entradas de los iones sodio a los canales, generando que dichos canales sean afectados alterando la conductividad del ión en tránsito. Sin lugar a dudas la característica más importante de estos compuestos es su alto efecto irritante o "knock down" que hace que el insecto apenas entre en contacto con la superficie tratada deje de alimentarse y caiga. Las piretrinas son el mejor ejemplo de la copia y modificación de moléculas en laboratorio porque dieron origen a la familia de los piretroides (Silva, 2002).
Para ver el gráfico seleccione la opción "Descargar" del menú superior
Figura 2: Estructura molecular de Piretrina
La nicotina (Figura 3) es un alcaloide derivado especialmente de tabaco (Nicotiana tabacum Fam. Solanaceae). Sus propiedades insecticidas fueron reconocidas en la primera mitad del siglo XVI. Este compuesto no se encuentra en la planta en forma libre sino que formando maleatos y citratos. La nicotina es básicamente un insecticida de contacto no persistente. Su modo de acción consiste en mimetizar la acetilcolina al combinarse con su receptor en la membrana postsináptica de la unión neuromuscular. El receptor acetilcolínico, es un sitio de acción de la membrana postsináptica que reacciona con la acetilcolina y altera la permeabilidad de la membrana; la actividad de la nicotina ocasiona la generación de nuevos impulsos que provocan contracciones espasmódicas, convulsiones y finalmente la muerte. Hoy en día se encuentran en el mercado un grupo de insecticidas conocidos como neonicotinoides que son copias sintéticas o derivadas de la estructura de la nicotina como son Imidacloprid, Thiacloprid, Nitempiram, Acetamiprid y Thiamethoxam entre otros.
Para ver el gráfico seleccione la opción "Descargar" del menú superior
Figura 3: Estructura molecular de la Nicotina
Otra planta utilizada como insecticida es la Anabasis aphylla L. (Fam. Chenopodiaceae). Su principio activo denominado anabasina o neonicotina es similar a la nicotina y actúa de la misma forma. Esta planta crece en Asia Central (Duke, 1990).
La rianodina se obtiene de los tallos y raices de una planta originaria de América del Sur conocida como Riania speciosa (Fam. Flacourtiaceae). De esta planta se obtiene una serie de alcaloides, siendo el mas importante la rianodina. Este alcaloide actúa por contacto y vía estomacal afectando directamente a los músculos impidiendo su contracción y ocasionando parálisis. La planta es utilizada para combatir larvas de diversos Lepidopteros que atacan frutos y particularmente la plaga del maíz europeo
Figura 4: Estructura molecular de la Rianodina
La azadirachtina es un tetraterpenoide característico de la familia Meliaceae pero especialmente del árbol Neem (Azadirachta indica), originario de la india. Este compuesto se encuentra en la corteza, hojas y frutos de este árbol pero la mayor concentración se ubica en la semilla. En el extracto se han identificado alrededor de 18 compuestos entre los que destacan salanina, meliantrol y azadiractina que es el que se encuentra en mayor concentración. Muestra acción antialimentaria, reguladora del crecimiento, inhibidora de la oviposición y esterilizante. Hoy en día ya se pueden encontrar formulaciones comerciales de Neem con nombres como Neem Gold, Neemazal, Econeem, Neemark, Neemcure y Azatin entre otros, en países como Estados Unidos, India, Alemania y varios países de América Latina
Figura 5: Estructura de la Azadiractina
En el caso de Melia azedarach (Fam. Meliacea), también llamada "Paraíso" crece abundantemente en Argentina, sus frutos maduros y sus hojas amarillas son usados como insecticida y antialimentario sobre diferentes tipos de plagas. El potente efecto insecticida del extracto de Paraíso podría ser equivalente al del extracto de Neem. Estudios realizados a partir de distintas concentraciones de extracto de Paraíso demuestran que este inhibe la alimentación y afecta negativamente el desarrollo y supervivencia de distintas especies plaga de insectos que atacan diversos cultivos agronómicos (Valladares, 1997). Distintas concentraciones de extracto de paraíso (2, 5 y 10 %) provocan un efecto antialimentario en larvas de Xanthogaleruca luteola (Coleoptera) llamada también vaquita del Olmo, de casi un 87 % y en los adultos desde un 75 % llegando a un 100 % de inhibición bajo la concentración mas alta (Valladares, 1997). El compuesto activo aislado es un limonoide llamado meliartenin. La actividad antialimentaria de este compuesto muestra que a dosis que van desde 5.5 a 27. 6 µg/cm2 provocan una actividad inhibitoria de mas de un 75% y la mas moderada desde un 50 a un 75% para la mayoría de las especies tratadas y estos resultados comparable al limonoide comercial azadirachtina, siendo este el mayor compuesto antialimentario conocido. (Carpinella, 2002; Carpinella, 2003). El modo de acción de estos compuestos extraídos de distintas especies de Meliaceas puede darse a partir de una combinación entre un efecto antialimentario y una toxicidad post-digestiva (Céspedes, 2000). Los resultados que se obtienen en las respectivas investigaciones realizadas en laboratorio tanto para A. indica como para M. azedarach se llevan a cabo a través de técnicas de bioensayos guiados con plagas de insectos de interés como piojos, plagas de cultivos agronómicos importantes como orugas defoliadoras, cortadoras y barrenadoras, vaquitas de los zapallos, vaquitas del olmo, mosca de los frutos y mosquita blanca, langostas, grillo topo, y funciona como buen repelente contra mosquitos. Ambas plantas han sido reconocidas por sus propiedades insecticidas y antialmentaria. (Heiden, 1991).
Figura 6: Estructura molecular de Meliartenin
La sebadilla es un compuesto derivado de las semillas de una planta de origen sudamericano conocido como Schoenocaulon officinale (Fam. Liliaceae).Las semillas de esta planta han demostrado tener cantidades importantes de alcaloides que le confieren las propiedades tóxicas. El polvo de estas semillas es uno de los insecticidas vegetales de menor toxicidad para mamíferos pero no así si se aíslan sus alcaloides que pueden llegar a ser altamente tóxicos además de irritantes para la piel. (Silva, 2002). El poliglodial es un sesquiterpeno producido por Polygonum hydropiper ( Fam. Polygonaceae) es usado como un potente inhibidor de la alimentación en afidos. (Duke, 1990).
De las Rutales, se han aislado numerosos limonoides (naturales y modificados) de plantas pertenecientes a este orden para estudiar los efectos antialimentarios que provocan sobre especies de insectos plaga pertenecientes a Lepidopteros. (Suresh, G., 2002)
El ajenjo dulce es el nombre común de Artemisia annua (Fam. Asteraceae). El aceite esencial producido en las partes aéreas de esta planta es usado contra el ataque de insectos plagas de productos almacenados. (Rao, 1999; Tripathi, 2000, 2001). Se conoce el efecto provocado por el aceite sobre el desarrollo y reproducción en chinches. (Rao, 1998). Recientemente, se esta investigando la actividad insecticida y antialimentaria de distintas concentraciones del extracto orgánico de las partes aéreas de A. annua sobre dos plagas agronómicas importantes, con resultados muy favorables. Por otra parte se esta estudiando también el efecto causado sobre las mismas plagas por parte de uno de los principales compuestos activos de esta planta, llamado artemisina, conocido y usado mayormente como antimalárico. (Kleyman, 1984). Se ha observado mediante pruebas en laboratorio que este compuesto produce efecto antialimentario sobre insectos plaga, como Epilachna. Paenulata (Coleoptera) y Spodoptera eridania (Lepidoptera) causando también un porcentaje importante de mortalidad y cambios en el desarrollo larval. Con concentraciones de extracto que van desde 0.15 a 1.5 mg/cm2, generando una posibilidad para el uso de este extracto en el control de plagas debido a que provocan entre un 80 a 100% de actividad antialimentaria para ambas especies. Los efectos del compuesto activo afectan el desarrollo y la supervivencia de estas plagas a una concentración de 0.03 mg/cm2 siendo esta dosis equivalente a la concentración mas alta del extracto, dando resultados de actividad antialimentaria de entre un 80 a un 90% para ambas especies tratadas. Se observó también que este principio activo provoca un efecto neurotóxico ya que el comportamiento de los insectos tratados con el mismo comienzan a realizar movimientos descoordinados, temblores y colapso lo que nos indica que aun continuaran las investigaciones.
Figura 7: Estructura molecular de Artemisina.
ALCALOIDES INSECTICIDAS
En hortalizas tan comunes en nuestro medio agronómico como, la papa, el tomate y la berenjena pertenecientes a la Familia Solanaceae, producen alcaloides conocidos como chaconina, solanina, tomatina, atropina y escopolamina, poseen un efecto insecticida poderoso en la mayoría de los insectos, aunque algunas especies han aprendido a tolerar las toxinas.
Agregar a favoritos Invitar a un amigo Ayuda Português ¡Regístrese! | Iniciar sesión En el índice En la web Busqueda avanzada
Monografías
Nuevas
Publicar
Blogs
Foros
Monografias.com > Agricultura y Ganaderia
Descargar Imprimir Comentar este trabajo Agregar a favoritos Enviar a un amigo Trabajos relacionados Anuncios Google
Automovil Fiat Locker
La naturaleza hará cola para ver los nuevos Palio e Idea Adventure.
www.fiat.com.co
Triaso Equipos
Fabricación de Plantas de Asfalto Excelentes precios
www.triaso.com.mx
Eval de Impacto Ambiental
Excelente Prog. de Especialización p/ tu Formación Profesional.
UTadeo.edu.coInsecticidas naturales
Enviado por emaggi
Origen de los pesticidas Naturales
Insecticidas Naturales a partir de Extractos Vegetales
Alcaloides Insecticidas
Insecticidas Naturales de Uso Popular
Conclusiones
Bibliografía
ORIGEN DE LOS PESTICIDAS NATURALES
Los productos sintéticos destinados a controlar plagas y enfermedades en los vegetales han tenido un rol muy marcado en el incremento de la producción agrícola. Sin embargo el uso continuo e indiscriminado de estas sustancias, no sólo ha causado enfermedades (Waterhouse, 1996) y muertes por envenenamiento a corto y largo plazo, sino también ha afectado al medio ambiente, acumulándose por bioconcentración en los distintos eslabones de la cadena alimenticia, en el suelo y en el agua. Son responsables además de la resistencia (Bourguet, 2000) a insecticidas por parte de los insectos, sin por ello restar importancia a la destrucción de parásitos, predadores naturales y polinizadores, entre los otros tantos integrantes del ecosistema (Freemark, 1995), que han visto alterado su ciclo de vida a causa de estos productos. El hombre depende del consumo directo de las plantas tanto vegetales, cultivos, cereales como de la obtención de sus productos. Anualmente, una tercera parte de la producción de alimentos se ve destruida por pestes de cultivos y productos almacenados.(Ahmed, 1984), por lo cual se hace imprescindible el estudio de nuevas vías de control de plagas. Las plantas, en conjunto, producen mas de 100.000 sustancias de bajo peso molecular conocidas también como metabolitos secundarios. Estos son, normalmente, no-esenciales para el proceso metabólico básico de la planta. Entre ellos se encuentran terpenos, lignanos, alcaloides, azúcares, esteroides, ácidos grasos, etc. Semejante diversidad química es consecuencia del proceso evolutivo que ha llevado a la selección de especies con mejores defensas contra el ataque microbiano, o la predación de insectos y animales (Dixon, 2001). Hoy en día se sabe que estos metabolitos secundarios tienen un rol importante en el mecanismo defensivo de las plantas (Jacobson, 1989). Por lo tanto en los últimos años se está retornando al uso de las plantas como fuente de pesticidas mas seguros para el medio ambiente y la salud humana (Ottaway, 2001; Mansaray, 2000). Los pesticidas pueden ser clasificados de acuerdo con el tipo de organismo frente a los cuales son eficaces: funguicidas, herbicidas, insecticidas, moluscicidas, nematicidas, rodenticidas (Evans, 1991). Sin lugar a dudas los insecticidas naturales a partir de extractos vegetales constituyen una muy interesante alternativa de control de insectos además de que sólo se han evaluado muy pocas plantas en relación a la fuente natural que ofrece el planeta, por lo que las perspectivas futuras en cuanto a investigación, son aun mayores.
INSECTICIDAS NATURALES A PARTIR DE EXTRACTOS VEGETALES
A partir de la necesidad por encontrar una nueva alternativa natural para el control de insectos plagas y reemplazar así los pesticidas sintéticos aparecen los insecticidas botánicos ofreciendo seguridad para el medio ambiente y una eficiente opción agronómica. (Borembaum, 1989).
Muchas plantas son capaces de sintetizar metabolitos secundarios que poseen propiedades biológicas con importancia contra insectos plagas. (Matthews, 1993; Enriz, 2000; Calderón, 2001; Céspedes, 2001; Gonzalez-Coloma; 2002). La selección de plantas que contengan metabolitos secundarios capaces de ser utilizados como insecticidas naturales deben ser de fácil cultivo y con principios activos potentes, con alta estabilidad química y de optima producción.
Las principales compuestos aislados de plantas usadas desde hace mucho tiempo para fines insecticidas son:
La rotenona, extraída de una planta llamada derris, (Derris elliptica y Lonchocarpus utilis, Fam. Leguminosae) (Figura 1) es un flavonoide que se extrae de las raíces de estas plantas. De la primera se puede obtener un 13% de rotenona mientras que de la segunda un 5%. Derris es nativa de los trópicos orientales, mientras que Lonchocarpus es del hemisferio occidental. Este compuesto es un insecticida de contacto e ingestión, y repelente. Su modo de acción implica una inhibición del transporte de electrones a nivel de mitocondrias bloqueando la fosforilación del ADP a ATP. Por esto se dice que actúa inhibiendo el metabolismo del insecto. Los síntomas que presentan los insectos intoxicados con rotenona son: disminución del consumo de oxigeno, depresión en la respiración y ataxia que provocan convulsiones y conducen finalmente a la parálisis y muerte del insecto por paro respiratorio (Silva, 2002)
Para ver el gráfico seleccione la opción "Descargar" del menú superior
Figura 1: Estructura molecular de Rotenona
Las piretrinas (Figura 2) son esteres con propiedades insecticida obtenidas de las flores del piretro (Chrysantemum cinaerifolium, Fam Compositae). Los componentes de esta planta con actividad insecticida reconocida son seis ésteres, formados por la combinación de los ácidos crisantémico y pirétrico y los alcoholes piretrolona, cinerolona y jasmolona. Estos compuestos atacan tanto el sistema nervioso central como el periférico lo que ocasiona descargas repetidas, seguidas de convulsiones. Diversos estudios han demostrado que estos compuestos taponan las entradas de los iones sodio a los canales, generando que dichos canales sean afectados alterando la conductividad del ión en tránsito. Sin lugar a dudas la característica más importante de estos compuestos es su alto efecto irritante o "knock down" que hace que el insecto apenas entre en contacto con la superficie tratada deje de alimentarse y caiga. Las piretrinas son el mejor ejemplo de la copia y modificación de moléculas en laboratorio porque dieron origen a la familia de los piretroides (Silva, 2002).
Para ver el gráfico seleccione la opción "Descargar" del menú superior
Figura 2: Estructura molecular de Piretrina
La nicotina (Figura 3) es un alcaloide derivado especialmente de tabaco (Nicotiana tabacum Fam. Solanaceae). Sus propiedades insecticidas fueron reconocidas en la primera mitad del siglo XVI. Este compuesto no se encuentra en la planta en forma libre sino que formando maleatos y citratos. La nicotina es básicamente un insecticida de contacto no persistente. Su modo de acción consiste en mimetizar la acetilcolina al combinarse con su receptor en la membrana postsináptica de la unión neuromuscular. El receptor acetilcolínico, es un sitio de acción de la membrana postsináptica que reacciona con la acetilcolina y altera la permeabilidad de la membrana; la actividad de la nicotina ocasiona la generación de nuevos impulsos que provocan contracciones espasmódicas, convulsiones y finalmente la muerte. Hoy en día se encuentran en el mercado un grupo de insecticidas conocidos como neonicotinoides que son copias sintéticas o derivadas de la estructura de la nicotina como son Imidacloprid, Thiacloprid, Nitempiram, Acetamiprid y Thiamethoxam entre otros.
Para ver el gráfico seleccione la opción "Descargar" del menú superior
Figura 3: Estructura molecular de la Nicotina
Otra planta utilizada como insecticida es la Anabasis aphylla L. (Fam. Chenopodiaceae). Su principio activo denominado anabasina o neonicotina es similar a la nicotina y actúa de la misma forma. Esta planta crece en Asia Central (Duke, 1990).
La rianodina se obtiene de los tallos y raices de una planta originaria de América del Sur conocida como Riania speciosa (Fam. Flacourtiaceae). De esta planta se obtiene una serie de alcaloides, siendo el mas importante la rianodina. Este alcaloide actúa por contacto y vía estomacal afectando directamente a los músculos impidiendo su contracción y ocasionando parálisis. La planta es utilizada para combatir larvas de diversos Lepidopteros que atacan frutos y particularmente la plaga del maíz europeo (Silva, 2002).
Para ver el gráfico seleccione la opción "Descargar" del menú superior
Figura 4: Estructura molecular de la Rianodina
La azadirachtina es un tetraterpenoide característico de la familia Meliaceae pero especialmente del árbol Neem (Azadirachta indica), originario de la india. Este compuesto se encuentra en la corteza, hojas y frutos de este árbol pero la mayor concentración se ubica en la semilla. En el extracto se han identificado alrededor de 18 compuestos entre los que destacan salanina, meliantrol y azadiractina que es el que se encuentra en mayor concentración. Muestra acción antialimentaria, reguladora del crecimiento, inhibidora de la oviposición y esterilizante. Hoy en día ya se pueden encontrar formulaciones comerciales de Neem con nombres como Neem Gold, Neemazal, Econeem, Neemark, Neemcure y Azatin entre otros, en países como Estados Unidos, India, Alemania y varios países de América Latina (Silva, 2002)
Para ver el gráfico seleccione la opción "Descargar" del menú superior
Figura 5: Estructura de la Azadiractina
En el caso de Melia azedarach (Fam. Meliacea), también llamada "Paraíso" crece abundantemente en Argentina, sus frutos maduros y sus hojas amarillas son usados como insecticida y antialimentario sobre diferentes tipos de plagas. El potente efecto insecticida del extracto de Paraíso podría ser equivalente al del extracto de Neem. Estudios realizados a partir de distintas concentraciones de extracto de Paraíso demuestran que este inhibe la alimentación y afecta negativamente el desarrollo y supervivencia de distintas especies plaga de insectos que atacan diversos cultivos agronómicos (Valladares, 1997). Distintas concentraciones de extracto de paraíso (2, 5 y 10 %) provocan un efecto antialimentario en larvas de Xanthogaleruca luteola (Coleoptera) llamada también vaquita del Olmo, de casi un 87 % y en los adultos desde un 75 % llegando a un 100 % de inhibición bajo la concentración mas alta (Valladares, 1997). El compuesto activo aislado es un limonoide llamado meliartenin. La actividad antialimentaria de este compuesto muestra que a dosis que van desde 5.5 a 27. 6 µg/cm2 provocan una actividad inhibitoria de mas de un 75% y la mas moderada desde un 50 a un 75% para la mayoría de las especies tratadas y estos resultados comparable al limonoide comercial azadirachtina, siendo este el mayor compuesto antialimentario conocido. (Carpinella, 2002; Carpinella, 2003). El modo de acción de estos compuestos extraídos de distintas especies de Meliaceas puede darse a partir de una combinación entre un efecto antialimentario y una toxicidad post-digestiva (Céspedes, 2000). Los resultados que se obtienen en las respectivas investigaciones realizadas en laboratorio tanto para A. indica como para M. azedarach se llevan a cabo a través de técnicas de bioensayos guiados con plagas de insectos de interés como piojos, plagas de cultivos agronómicos importantes como orugas defoliadoras, cortadoras y barrenadoras, vaquitas de los zapallos, vaquitas del olmo, mosca de los frutos y mosquita blanca, langostas, grillo topo, y funciona como buen repelente contra mosquitos. Ambas plantas han sido reconocidas por sus propiedades insecticidas y antialmentaria. (Heiden, 1991).
Figura 6: Estructura molecular de Meliartenin
La sebadilla es un compuesto derivado de las semillas de una planta de origen sudamericano conocido como Schoenocaulon officinale (Fam. Liliaceae).Las semillas de esta planta han demostrado tener cantidades importantes de alcaloides que le confieren las propiedades tóxicas. El polvo de estas semillas es uno de los insecticidas vegetales de menor toxicidad para mamíferos pero no así si se aíslan sus alcaloides que pueden llegar a ser altamente tóxicos además de irritantes para la piel. (Silva, 2002). El poliglodial es un sesquiterpeno producido por Polygonum hydropiper ( Fam. Polygonaceae) es usado como un potente inhibidor de la alimentación en afidos. (Duke, 1990).
De las Rutales, se han aislado numerosos limonoides (naturales y modificados) de plantas pertenecientes a este orden para estudiar los efectos antialimentarios que provocan sobre especies de insectos plaga pertenecientes a Lepidopteros. (Suresh, G., 2002)
El ajenjo dulce es el nombre común de Artemisia annua (Fam. Asteraceae). El aceite esencial producido en las partes aéreas de esta planta es usado contra el ataque de insectos plagas de productos almacenados. (Rao, 1999; Tripathi, 2000, 2001). Se conoce el efecto provocado por el aceite sobre el desarrollo y reproducción en chinches. (Rao, 1998). Recientemente, se esta investigando la actividad insecticida y antialimentaria de distintas concentraciones del extracto orgánico de las partes aéreas de A. annua sobre dos plagas agronómicas importantes, con resultados muy favorables. Por otra parte se esta estudiando también el efecto causado sobre las mismas plagas por parte de uno de los principales compuestos activos de esta planta, llamado artemisina, conocido y usado mayormente como antimalárico. (Kleyman, 1984). Se ha observado mediante pruebas en laboratorio que este compuesto produce efecto antialimentario sobre insectos plaga, como Epilachna. Paenulata (Coleoptera) y Spodoptera eridania (Lepidoptera) causando también un porcentaje importante de mortalidad y cambios en el desarrollo larval. Con concentraciones de extracto que van desde 0.15 a 1.5 mg/cm2, generando una posibilidad para el uso de este extracto en el control de plagas debido a que provocan entre un 80 a 100% de actividad antialimentaria para ambas especies. Los efectos del compuesto activo afectan el desarrollo y la supervivencia de estas plagas a una concentración de 0.03 mg/cm2 siendo esta dosis equivalente a la concentración mas alta del extracto, dando resultados de actividad antialimentaria de entre un 80 a un 90% para ambas especies tratadas. Se observó también que este principio activo provoca un efecto neurotóxico ya que el comportamiento de los insectos tratados con el mismo comienzan a realizar movimientos descoordinados, temblores y colapso lo que nos indica que aun continuaran las investigaciones.
Figura 7: Estructura molecular de Artemisina.
ALCALOIDES INSECTICIDAS
En hortalizas tan comunes en nuestro medio agronómico como, la papa, el tomate y la berenjena pertenecientes a la Familia Solanaceae, producen alcaloides conocidos como chaconina, solanina, tomatina, atropina y escopolamina, poseen un efecto insecticida poderoso en la mayoría de los insectos, aunque algunas especies han aprendido a tolerar las toxinas. (Menjivar, 2001)
INSECTICIDAS NATURALES DE USO POPULAR
La búsqueda de métodos para la protección natural de cultivos sigue vigente a pesar de que el mercado ofrece una variedad de productos muy amplia. La naturaleza nos proporciona medios para la protección de cultivos que merecen nuestra atención. Estos se originan en la riqueza intrínseca de las especies y que surgen de su lucha por la supervivencia. La protección natural de cultivos reduce el riesgo de la resistencia en los insectos, tiene menos consecuencias letales para los enemigos naturales, reduce la aparición de plagas secundarias, es menos nocivo para el hombre, y no ocasiona daños en el medio ambiente (Stoll, 1989).
Como alternativa, los productos naturales provenientes de una gran variedad de plantas, actúan inhibiendo, repeliendo, disuadiendo o eliminando insectos plagas de distinto tipo (rastreros, voladores, chupadores, defoliadores, etc.) como así también estimulando procesos vitales de los cultivos para fortalecerlos y así protegerse de los ataques de las distintas pestes. Algunas de estas plantas han sido estudiadas científicamente y otras siguen vigentes por leyenda popular (Sánchez, 2002; Stoll, 1989).
La siguiente lista ofrece una variedad de especies utilizadas desde hace mucho tiempo por distintas culturas y los conocimientos que se tienen de las propiedades de estas plantas se difunden de boca en boca.
Equinácea (Equinácea angustifolia): las raíces de esta planta contienen un componente tóxico para las larvas del mosquito Aedes, la mosca doméstica y es un disruptor del crecimiento y desarrollo de los insecto s de la harina.
Hisopo (Hisopus officinalis). Al igual que otras plantas aromáticas, el hisopo actúa eficazmente ahuyentando, orugas, pulgones y caracoles.
Lavanda (Lavandula officinalis). Sus flores ahuyentan la polilla del armario y es una planta melífera y que atrae insectos beneficiosos como la crisopa.
Poleo (Mentha pulegium). Las hojas trituradas y secas son uno de los remedios más efectivos que existen contra las garrapatas de los animales domésticos. Se aplica espolvoreando la piel del animal y las zonas donde descansa, también es efectivo lavar al animal con una infusión bien concentrada de la planta. Ahuyenta también a las hormigas.
Albahaca (Ocimun basilicum). Principios activos: linalol, estregol, leneol. Se asocia al cultivo de tomates para repeler a la mosca blanca Es insecticida ya que controla polillas, áfidos, moscas, etc. También Acaricida.
Artemisa (Artemisia vulgar, Ambrosia cumanensis) Principio activo: Cíñelo. Esta planta es tóxica para los animales por lo que no se le debe sembrar sobre pastizales, pero sí al borde de los lotes de cultivo para impedir o restringir el paso de insectos rastreros.
Salvia (Salvia officinalis). Planta melífera.. Principios activos: boreol, cineol, tuyona. Rechaza la mosca blanca en diferentes cultivos y pulgas y otros insectos voladores.
Falsa acacia (Robinia seudoacacia).Arbol de flores tremendamente melíferas. Las hojas machacadas , mezcladas con azúcar atraen y matan a las moscas.
Romero (Rosmarinus officinalis).Planta melífera y que atrae insectos beneficiosos. Las hojas tritutaras se usan como repelente de pulgas y garrapatas.
Tagetes (Tagetes patula). Planta tóxica para las larvas de diferentes mosquitos. Sus secreciones radiculares son una barrera eficaz contra los nemátodos, por lo que se cultivan en proximidad plantas susceptibles como tomates, patatas, perejil.
Toronjil (Melissa officinalis). Principio activo: linalol. Repele pulgas, polillas y áfidos.
Ortiga (Urtica sp. ). Principios activos: serotonina, histamina, filosterina. Acelera la descomposición de la materia orgánica para la formación del compost con le cual se estimula el crecimiento de las plantas y controla orugas y pulgones.
Mezcla de maíz y fríjol con ají (Capsicum frutescens; Fam. Solanaceae) son usados desde los tiempos aborígenes y sirven actualmente para repeler distintas plagas de insectos.
Ruda (Ruta graveolens, Fam. Rutaceae) Principios activos: Rutina, inulina. Su fuerte olor atrae moscas y polillas negras disminuyendo daños sobre los cultivos cercanos.
Ajo (Allium cepa;Alliaceae) Se aisló al agente activo básico del ajo, la alliina, que cuando es liberada interactúa con una enzima llamada allinasa y de esta forma se genera la allicina, la sustancia que contiene el olor característico y penetrante del ajo. Es usado contra piojos. Otro principio activo: disulfuro de alipropilo: Controla larvas de plagas de diferentes cultivos. Como lechuga. zanahoria, apio y fresas.
Frijol (Canavalia ensiformis). Principio activo: canavalina. Controla la hormigas y actúa como funguicida.
Citronella (Cymbopogon nardus, Fam. Gramíneas) esta especie se produce a partir de dos variedades: var. lana batu, la cual suministra un aceite relativamente pobre en geraniol (55-65 %); y otra conocida con el nombre de var. maha pangiri, de mejor calidad por su alto contenido en geraniol, de hasta el 90 %. Los principales compuestos son el citronelal y el geraniol, l-limoneno, canfeno, dipenteno, citronelol, borneol, nerol, metileugenol, los cuales son utilizados en la preparación de insecticidas a base de aceites esenciales, o como aromatizante de algunos insecticidas.
Menta (Mentha spicata). Principios activos: mentol, felandreno, menteno, Se le utiliza para controlar hormigas.
Ajenjo (Artemisia absinthium).Principio activo: cineol, tuyona, etc. El té de hojas de esta planta controla babosas en los cultivos, y pulgas en los animales. Albahaca (Ocimum basilicum) Principio activo: linalol, estregol, leneol, etc. Repelente, insecticida, acaricida controla polillas, áfidos, moscas.
Artemisa (Artemisia vulgar, Ambrosia cumanensis) Principio activo: Cineol: Esta planta es tóxica para los animales por lo que no se le debe sembrar sobre pastizales, pero sí al borde de los lotes de cultivo para impedir o restringir el paso de insectos rastreros.
Calendula (Caléndula otticinalis). Principio activo: caléndulina: Comúnmente se le denomina botón de oro de madera y se caracteriza por ser excelente para controlar nemátodos y moscas blancas si se la siembra intercalada con yerbabuena.
Frijol (Canavalia ensiformis).Principio activo: canavalina. Controla hormigas.
Muña o Peperina (Minthostachys mollis).Principios activos: Mentol, mentola, Tiene propiedades repelentes de insectos cuando la papa está en almacenamiento. Dentro de las plagas que repele, se encuentran el gusano blanco de la papa, el gusano cortador (Copitarsia curbata), el gorgojo de la papa (Premmnotrvpes suni ) y el gusano alambre (Ladius sp). Los sahumerios con muña también controlan polillas. Durante el cultivo, se suele colocar plantas frescas de muña para prevenir el ataque de insectos o espolvorear cenizas de la planta en los campos atacados por pulgones.
Yerbabuena (Mentha piperita). Principio activo: mentol, cíñelo. Es una planta excelente para el control de insectos chupadores como piojos, pulgones, áfidos en frutales.
Quassia (Quassia amara). Principio activo concentrado en la madera, hojas y raíces. Es insecticida, actuando por contacto o ingestión. Se usa contra insectos chupadores, minadores, barrenadores, áfidos y algunos coleopteros.
viernes, 21 de agosto de 2009
los biodijestores
UN BIODIGESTOR
Un digestor de desechos orgánicos o biodigestor es, en su forma más simple, un contenedor cerrado, hermético e impermeable (llamado reactor), dentro del cual se deposita el material orgánico a fermentar (excrementos de animales y humanos, desechos vegetales-no se incluyen cítricos ya que acidifican-, etcétera) en determinada dilución de agua para que se descomponga, produciendo gas metano y fertilizantes orgánicos ricos en nitrógeno, fósforo y potasio.
Este sistema también puede incluir una cámara de carga y nivelación del agua residual antes del reactor, un dispositivo para captar y almacenar el biogás y cámaras de hidropresión y postratamiento (filtro y piedras, de algas, secado, entre otros) a la salida del reactor.
El fenómeno de biodigestión ocurre porque existe un grupo de microorganismos bacterianos anaeróbicos presentes en el material fecal que, al actuar sobre los desechos orgánicos de origen vegetal y animal, producen una mezcla de gases con alto contenido de metano (CH4) llamada biogás, sumamente eficiente si se emplea como combustible. Como resultado de este proceso genera residuos con un alto grado de concentración de nutrientes y materia orgánica (ideales como fertilizantes) que pueden ser aplicados frescos, pues el tratamiento anaerobio elimina los malos olores y la proliferación de moscas.
Se deben controlar ciertas condiciones pH, presión y temperatura a fin de que se pueda obtener un óptimo rendimiento.
El biodigestor es un sistema sencillo de implementar con materiales económicos y se está introduciendo en comunidades rurales aisladas y de países subdesarrollados para obtener el doble beneficio de conseguir solventar la problemática energética-ambiental, así como realizar un adecuado manejo de los residuos tanto humanos como animales.
¿Dónde te gustaría ver a Wikimedia en cinco años? ¡Envía una propuesta! (Más información) [Contraer] [Ayúdanos traduciendo.]
Wikimanía 2009 se desarrollará en Buenos Aires del 26 al 28 de agosto. ¡Inscríbete!.
Biodigestor
De Wikipedia, la enciclopedia libre
Saltar a navegación, búsqueda
Un digestor de desechos orgánicos o biodigestor es, en su forma más simple, un contenedor cerrado, hermético e impermeable (llamado reactor), dentro del cual se deposita el material orgánico a fermentar (excrementos de animales y humanos, desechos vegetales-no se incluyen cítricos ya que acidifican-, etcétera) en determinada dilución de agua para que se descomponga, produciendo gas metano y fertilizantes orgánicos ricos en nitrógeno, fósforo y potasio.
Este sistema también puede incluir una cámara de carga y nivelación del agua residual antes del reactor, un dispositivo para captar y almacenar el biogás y cámaras de hidropresión y postratamiento (filtro y piedras, de algas, secado, entre otros) a la salida del reactor.
El fenómeno de biodigestión ocurre porque existe un grupo de microorganismos bacterianos anaeróbicos presentes en el material fecal que, al actuar sobre los desechos orgánicos de origen vegetal y animal, producen una mezcla de gases con alto contenido de metano (CH4) llamada biogás, sumamente eficiente si se emplea como combustible. Como resultado de este proceso genera residuos con un alto grado de concentración de nutrientes y materia orgánica (ideales como fertilizantes) que pueden ser aplicados frescos, pues el tratamiento anaerobio elimina los malos olores y la proliferación de moscas.
Se deben controlar ciertas condiciones pH, presión y temperatura a fin de que se pueda obtener un óptimo rendimiento.
El biodigestor es un sistema sencillo de implementar con materiales económicos y se está introduciendo en comunidades rurales aisladas y de países subdesarrollados para obtener el doble beneficio de conseguir solventar la problemática energética-ambiental, así como realizar un adecuado manejo de los residuos tanto humanos como animales.
Contenido [ocultar]
1 ¿Que es un biodigestor?
2 Los biodigestores familiares de bajo costo
3 Adaptación de los biodigestores
4 Lecciones aprendidas en divulgación y diseminación
5 Difusión, divulgación y diseminación
6 Talleres de difusión de la tecnología
7 Véase también
8 Enlaces externos
¿Que es un biodigestor? [editar]Un biodigestor es un sistema natural que aprovecha la digestión anaerobia (en ausencia de oxigeno) de las bacterias que ya habitan en el estiércol, para transformar éste en biogás y fertilizante. El biogás puede ser empleado como combustible en las cocinas, o iluminación, y en grandes instalaciones se puede utilizar para alimentar un motor que genere electricidad. El fertilizante, llamado biol, inicialmente se ha considerado un producto secundario, pero actualmente se esta considerando de la misma importancia, o mayor, que el biogás ya que provee a las familias campesinas de un fertilizante natural que mejora fuertemente el rendimiento de las cosechas.
Los biodigestores familiares de bajo costo han sido desarrollados y están ampliamente implementados en países del sureste asiático, pero en Sudamérica, solo países como Cuba, Colombia, Brasil y Costa Rica tienen desarrollada esta tecnología. Estos modelos de biodigestores familiares, construidos a partir de mangas de polietileno tubular, se caracterizan por su bajo costo, fácil instalación y mantenimiento, así como por requerir sólo de materiales locales para su construcción. Por ello se consideran una ‘tecnología apropiada’.
La falta de leña para cocinar en diferentes regiones de Bolivia hacen a estos sistemas interesantes para su difusión, divulgación y diseminación a gran escala. Las familias dedicadas a la agricultura, suelen ser propietarias de pequeñas cantidades de ganado (dos o tres vacas por ejemplo) y pueden, por tanto, aprovechar el estiércol para producir su propio combustible y un fertilizante natural mejorado. Se debe considerar que el estiércol acumulado cerca de las viviendas supone un foco de infección, olores y moscas que desaparecerán al ser introducido el estiércol diariamente en el biodigestor familiar. También es importante recordar la cantidad de enfermedades respiratorias que sufren, principalmente las mujeres, por la inhalación de humo al cocinar en espacios cerrados con leña o bosta seca. La combustión del biogás no produce humos visibles y su carga en ceniza es infinitamente menor que el humo proveniente de la quema de madera.
En el caso de Bolivia, donde existen tres regiones diferenciadas como altiplano, valle y trópico, esta tecnología fue introducida en el año 2002 en Mizque, (2200 m.s.n.m. Cochabamba) como parte de la transferencia tecnológica a una ONG cochabambina. Desde entonces, en constante colaboración por Internet con instituciones de Camboya, Vietnam y Australia y la ONG de Cochabamba, estos sistemas han sido adaptados al altiplano. La primera experiencia fue en el año 2003 instalando un biodigestor experimental a 4100 m.s.n.m. que aprovechaba el efecto invernadero. Este diseño preliminar sufrió un desarrollo para abaratar costes y adaptarlo a las condiciones rurales manteniendo el espíritu de tecnología apropiada.
Son tres los límites básicos de los biodigestores: la disponibilidad de agua para hacer la mezcla con el estiércol que será introducida en el biodigestor, la cantidad de ganado que posea la familia (tres vacas son suficientes) y la apropiación de la tecnología por parte de la familia.
Un digestor de desechos orgánicos o biodigestor es, en su forma más simple, un contenedor cerrado, hermético e impermeable (llamado reactor), dentro del cual se deposita el material orgánico a fermentar (excrementos de animales y humanos, desechos vegetales-no se incluyen cítricos ya que acidifican-, etcétera) en determinada dilución de agua para que se descomponga, produciendo gas metano y fertilizantes orgánicos ricos en nitrógeno, fósforo y potasio.
Este sistema también puede incluir una cámara de carga y nivelación del agua residual antes del reactor, un dispositivo para captar y almacenar el biogás y cámaras de hidropresión y postratamiento (filtro y piedras, de algas, secado, entre otros) a la salida del reactor.
El fenómeno de biodigestión ocurre porque existe un grupo de microorganismos bacterianos anaeróbicos presentes en el material fecal que, al actuar sobre los desechos orgánicos de origen vegetal y animal, producen una mezcla de gases con alto contenido de metano (CH4) llamada biogás, sumamente eficiente si se emplea como combustible. Como resultado de este proceso genera residuos con un alto grado de concentración de nutrientes y materia orgánica (ideales como fertilizantes) que pueden ser aplicados frescos, pues el tratamiento anaerobio elimina los malos olores y la proliferación de moscas.
Se deben controlar ciertas condiciones pH, presión y temperatura a fin de que se pueda obtener un óptimo rendimiento.
El biodigestor es un sistema sencillo de implementar con materiales económicos y se está introduciendo en comunidades rurales aisladas y de países subdesarrollados para obtener el doble beneficio de conseguir solventar la problemática energética-ambiental, así como realizar un adecuado manejo de los residuos tanto humanos como animales.
¿Dónde te gustaría ver a Wikimedia en cinco años? ¡Envía una propuesta! (Más información) [Contraer] [Ayúdanos traduciendo.]
Wikimanía 2009 se desarrollará en Buenos Aires del 26 al 28 de agosto. ¡Inscríbete!.
Biodigestor
De Wikipedia, la enciclopedia libre
Saltar a navegación, búsqueda
Un digestor de desechos orgánicos o biodigestor es, en su forma más simple, un contenedor cerrado, hermético e impermeable (llamado reactor), dentro del cual se deposita el material orgánico a fermentar (excrementos de animales y humanos, desechos vegetales-no se incluyen cítricos ya que acidifican-, etcétera) en determinada dilución de agua para que se descomponga, produciendo gas metano y fertilizantes orgánicos ricos en nitrógeno, fósforo y potasio.
Este sistema también puede incluir una cámara de carga y nivelación del agua residual antes del reactor, un dispositivo para captar y almacenar el biogás y cámaras de hidropresión y postratamiento (filtro y piedras, de algas, secado, entre otros) a la salida del reactor.
El fenómeno de biodigestión ocurre porque existe un grupo de microorganismos bacterianos anaeróbicos presentes en el material fecal que, al actuar sobre los desechos orgánicos de origen vegetal y animal, producen una mezcla de gases con alto contenido de metano (CH4) llamada biogás, sumamente eficiente si se emplea como combustible. Como resultado de este proceso genera residuos con un alto grado de concentración de nutrientes y materia orgánica (ideales como fertilizantes) que pueden ser aplicados frescos, pues el tratamiento anaerobio elimina los malos olores y la proliferación de moscas.
Se deben controlar ciertas condiciones pH, presión y temperatura a fin de que se pueda obtener un óptimo rendimiento.
El biodigestor es un sistema sencillo de implementar con materiales económicos y se está introduciendo en comunidades rurales aisladas y de países subdesarrollados para obtener el doble beneficio de conseguir solventar la problemática energética-ambiental, así como realizar un adecuado manejo de los residuos tanto humanos como animales.
Contenido [ocultar]
1 ¿Que es un biodigestor?
2 Los biodigestores familiares de bajo costo
3 Adaptación de los biodigestores
4 Lecciones aprendidas en divulgación y diseminación
5 Difusión, divulgación y diseminación
6 Talleres de difusión de la tecnología
7 Véase también
8 Enlaces externos
¿Que es un biodigestor? [editar]Un biodigestor es un sistema natural que aprovecha la digestión anaerobia (en ausencia de oxigeno) de las bacterias que ya habitan en el estiércol, para transformar éste en biogás y fertilizante. El biogás puede ser empleado como combustible en las cocinas, o iluminación, y en grandes instalaciones se puede utilizar para alimentar un motor que genere electricidad. El fertilizante, llamado biol, inicialmente se ha considerado un producto secundario, pero actualmente se esta considerando de la misma importancia, o mayor, que el biogás ya que provee a las familias campesinas de un fertilizante natural que mejora fuertemente el rendimiento de las cosechas.
Los biodigestores familiares de bajo costo han sido desarrollados y están ampliamente implementados en países del sureste asiático, pero en Sudamérica, solo países como Cuba, Colombia, Brasil y Costa Rica tienen desarrollada esta tecnología. Estos modelos de biodigestores familiares, construidos a partir de mangas de polietileno tubular, se caracterizan por su bajo costo, fácil instalación y mantenimiento, así como por requerir sólo de materiales locales para su construcción. Por ello se consideran una ‘tecnología apropiada’.
La falta de leña para cocinar en diferentes regiones de Bolivia hacen a estos sistemas interesantes para su difusión, divulgación y diseminación a gran escala. Las familias dedicadas a la agricultura, suelen ser propietarias de pequeñas cantidades de ganado (dos o tres vacas por ejemplo) y pueden, por tanto, aprovechar el estiércol para producir su propio combustible y un fertilizante natural mejorado. Se debe considerar que el estiércol acumulado cerca de las viviendas supone un foco de infección, olores y moscas que desaparecerán al ser introducido el estiércol diariamente en el biodigestor familiar. También es importante recordar la cantidad de enfermedades respiratorias que sufren, principalmente las mujeres, por la inhalación de humo al cocinar en espacios cerrados con leña o bosta seca. La combustión del biogás no produce humos visibles y su carga en ceniza es infinitamente menor que el humo proveniente de la quema de madera.
En el caso de Bolivia, donde existen tres regiones diferenciadas como altiplano, valle y trópico, esta tecnología fue introducida en el año 2002 en Mizque, (2200 m.s.n.m. Cochabamba) como parte de la transferencia tecnológica a una ONG cochabambina. Desde entonces, en constante colaboración por Internet con instituciones de Camboya, Vietnam y Australia y la ONG de Cochabamba, estos sistemas han sido adaptados al altiplano. La primera experiencia fue en el año 2003 instalando un biodigestor experimental a 4100 m.s.n.m. que aprovechaba el efecto invernadero. Este diseño preliminar sufrió un desarrollo para abaratar costes y adaptarlo a las condiciones rurales manteniendo el espíritu de tecnología apropiada.
Son tres los límites básicos de los biodigestores: la disponibilidad de agua para hacer la mezcla con el estiércol que será introducida en el biodigestor, la cantidad de ganado que posea la familia (tres vacas son suficientes) y la apropiación de la tecnología por parte de la familia.
jueves, 20 de agosto de 2009
HTML
Html
HTML, siglas de HyperText Markup Language (Lenguaje de Marcas de Hipertexto), es el lenguaje de marcado predominante para la construcción de páginas Web. Es usado para describir la estructura y el contenido en forma de texto, así como para complementar el texto con objetos tales como imágenes. HTML se escribe en forma de "etiquetas", rodeadas por corchetes angulares (<,>). HTML también puede describir, hasta un cierto punto, la apariencia de un documento, y puede incluir un script (por ejemplo Javascript), el cual puede afectar el comportamiento de navegadores web y otros procesadores de HTML.
HTML también es usado para referirse al contenido del tipo de MIME text/html o todavía más ampliamente como un término genérico para el HTML, ya sea en forma descendida del XML (como XHTML 1.0 y posteriores) o en forma descendida directamente de SGML (como HTML 4.01 y anteriores).
La primera descripción de HTML disponible públicamente fue un documento llamado HTML Tags (Etiquetas HTML), publicado por primera vez en Internet por Tim Berners-Lee en 1991. Describe 22 elementos comprendiendo el diseño inicial y relativamente simple de HTML. Trece de estos elementos todavía existen en HTML 4.3
Berners-Lee consideraba a HTML una ampliación de SGML, pero no fue formalmente reconocida como tal hasta la publicación de mediados de 1993, por la IETF, de una primera proposición para una especificación de HTML: el boceto Hypertext Markup Language de Berners-Lee y Dan Connolly, el cual incluía una Definición de Tipo de Documento SGML para definir la gramática.4 El boceto expiró luego de seis meses, pero fue notable por su reconocimiento de la etiqueta propia del navegador Mosaic usada para insertar imágenes sin cambio de línea, reflejando la filosofía del IETF de basar estándares en prototipos con éxito. 5 Similarmente, el boceto competidor de Dave Raggett HTML+ (Hypertext Markup Format) (Formato de marcaje de hipertexto), de 1993 tardío, sugería, estandarizar características ya implementadas tales como tablas.6
Marcado HTML [editar]
HTML consiste de varios componentes vitales, incluyendo elementos y sus atributos, tipos de data, y la declaración de tipo de documento.
Elementos [editar]
Los elementos son la estructura básica de HTML. Los elementos tienen dos propiedades básicas: atributos y contenido. Cada atributo y contenido tiene ciertas restricciones para que se considere válido al documento HTML. Un elemento generalmente tiene una etiqueta de inicio (p.ej.) y una etiqueta de cierre (p.ej. ). Los atributos del elemento están contenidos en la etiqueta de inicio y el contenido está ubicado entre las dos etiquetas (p.ej. Contenido ). Algunos elementos, tales como
, no tienen contenido ni llevan una etiqueta de cierre. Debajo se listan varios tipos de elementos de marcado usados en HTML.
Estructura general de una línea de código en el lenguaje de etiquetas HTML
El marcado estructural describe el propósito del texto. Por ejemplo,
El marcado presentacional describe la apariencia del texto, sin importar su función. Por ejemplo, negrita indica que los navegadores web visuales deben mostrar el texto en negrita, pero no indica qué deben hacer los navegadores web que muestran el contenido de otra manera (por ejemplo, los que leen el texto en voz alta). En el caso de negrita e itálica, existen elementos que se ven de la misma manera pero tienen una naturaleza más semántica: enfásis fuerte y énfasis. Es fácil ver cómo un lector de pantalla debería interpretar estos dos elementos. Sin embargo, son equivalentes a sus correspondientes elementos presentacionales: un lector de pantalla no debería decir más fuerte el nombre de un libro, aunque éste esté en itálicas en una pantalla. La mayoría del marcado presentacional ha sido desechada con HTML 4.0, en favor de Hojas de estilo en cascada.
El marcado hipertextual se utiliza para enlazar partes del documento con otros documentos o con otras partes del mismo documento. Para crear un enlace es necesario utilizar la etiqueta de ancla junto con el atributo href, que establecerá la dirección URL a la que apunta el enlace. Por ejemplo, un enlace a la Wikipedia sería de la forma Wikipedia. También se pueden crear enlaces sobre otros objetos, tales como imágenes .
Atributos [editar]
La mayoría de los atributos de un elemento son pares nombre-valor, separados por un signo de igual "=" y escritos en la etiqueta de comienzo de un elemento, después del nombre de éste. El valor puede estar rodeado por comillas dobles o simples, aunque ciertos tipos de valores pueden estar sin comillas en HTML (pero no en XHTML).7 8 De todas maneras, dejar los valores sin comillas es considerado poco seguro.9 En contraste con los pares nombre-elemento, hay algunos atributos que afectan al elemento simplemente por su presencia10 (tal como el atributo ismap para el elemento img).11
Códigos HTML básicos [editar]
• : define el inicio del documento HTML, le indica al navegador que lo que viene a continuación debe ser interpretado como código HTML.
• : define la cabecera del documento HTML, esta cabecera suele contener información sobre el documento que no se muestra directamente al usuario. Como por ejemplo el título de la ventana del navegador. Dentro de la cabecera podemos encontrar:
Un ejemplo de código HTML con coloreado de sintaxis
•: define el título de la página. Por lo general, el título aparece en la barra de título encima de la ventana
• : para vincular el sitio a hojas de estilo o iconos Por ejemplo:
•
HTML, siglas de HyperText Markup Language (Lenguaje de Marcas de Hipertexto), es el lenguaje de marcado predominante para la construcción de páginas Web. Es usado para describir la estructura y el contenido en forma de texto, así como para complementar el texto con objetos tales como imágenes. HTML se escribe en forma de "etiquetas", rodeadas por corchetes angulares (<,>). HTML también puede describir, hasta un cierto punto, la apariencia de un documento, y puede incluir un script (por ejemplo Javascript), el cual puede afectar el comportamiento de navegadores web y otros procesadores de HTML.
HTML también es usado para referirse al contenido del tipo de MIME text/html o todavía más ampliamente como un término genérico para el HTML, ya sea en forma descendida del XML (como XHTML 1.0 y posteriores) o en forma descendida directamente de SGML (como HTML 4.01 y anteriores).
La primera descripción de HTML disponible públicamente fue un documento llamado HTML Tags (Etiquetas HTML), publicado por primera vez en Internet por Tim Berners-Lee en 1991. Describe 22 elementos comprendiendo el diseño inicial y relativamente simple de HTML. Trece de estos elementos todavía existen en HTML 4.3
Berners-Lee consideraba a HTML una ampliación de SGML, pero no fue formalmente reconocida como tal hasta la publicación de mediados de 1993, por la IETF, de una primera proposición para una especificación de HTML: el boceto Hypertext Markup Language de Berners-Lee y Dan Connolly, el cual incluía una Definición de Tipo de Documento SGML para definir la gramática.4 El boceto expiró luego de seis meses, pero fue notable por su reconocimiento de la etiqueta propia del navegador Mosaic usada para insertar imágenes sin cambio de línea, reflejando la filosofía del IETF de basar estándares en prototipos con éxito. 5 Similarmente, el boceto competidor de Dave Raggett HTML+ (Hypertext Markup Format) (Formato de marcaje de hipertexto), de 1993 tardío, sugería, estandarizar características ya implementadas tales como tablas.6
Marcado HTML [editar]
HTML consiste de varios componentes vitales, incluyendo elementos y sus atributos, tipos de data, y la declaración de tipo de documento.
Elementos [editar]
Los elementos son la estructura básica de HTML. Los elementos tienen dos propiedades básicas: atributos y contenido. Cada atributo y contenido tiene ciertas restricciones para que se considere válido al documento HTML. Un elemento generalmente tiene una etiqueta de inicio (p.ej.
, no tienen contenido ni llevan una etiqueta de cierre. Debajo se listan varios tipos de elementos de marcado usados en HTML.
Estructura general de una línea de código en el lenguaje de etiquetas HTML
El marcado estructural describe el propósito del texto. Por ejemplo,
Golf
establece a "Golf" como un encabezamiento de segundo nivel, el cual se mostraría en un navegador de una manera similar al título "Marcado HTML" al principio de esta sección. El marcado estructural no define cómo se verá el elemento, pero la mayoría de los navegadores web han estandarizado el formato de los elementos. Un formato específico puede ser aplicado al texto por medio de hojas de estilo en cascada.El marcado presentacional describe la apariencia del texto, sin importar su función. Por ejemplo, negrita indica que los navegadores web visuales deben mostrar el texto en negrita, pero no indica qué deben hacer los navegadores web que muestran el contenido de otra manera (por ejemplo, los que leen el texto en voz alta). En el caso de negrita e itálica, existen elementos que se ven de la misma manera pero tienen una naturaleza más semántica: enfásis fuerte y énfasis. Es fácil ver cómo un lector de pantalla debería interpretar estos dos elementos. Sin embargo, son equivalentes a sus correspondientes elementos presentacionales: un lector de pantalla no debería decir más fuerte el nombre de un libro, aunque éste esté en itálicas en una pantalla. La mayoría del marcado presentacional ha sido desechada con HTML 4.0, en favor de Hojas de estilo en cascada.
El marcado hipertextual se utiliza para enlazar partes del documento con otros documentos o con otras partes del mismo documento. Para crear un enlace es necesario utilizar la etiqueta de ancla junto con el atributo href, que establecerá la dirección URL a la que apunta el enlace. Por ejemplo, un enlace a la Wikipedia sería de la forma Wikipedia. También se pueden crear enlaces sobre otros objetos, tales como imágenes .
Atributos [editar]
La mayoría de los atributos de un elemento son pares nombre-valor, separados por un signo de igual "=" y escritos en la etiqueta de comienzo de un elemento, después del nombre de éste. El valor puede estar rodeado por comillas dobles o simples, aunque ciertos tipos de valores pueden estar sin comillas en HTML (pero no en XHTML).7 8 De todas maneras, dejar los valores sin comillas es considerado poco seguro.9 En contraste con los pares nombre-elemento, hay algunos atributos que afectan al elemento simplemente por su presencia10 (tal como el atributo ismap para el elemento img).11
Códigos HTML básicos [editar]
• : define el inicio del documento HTML, le indica al navegador que lo que viene a continuación debe ser interpretado como código HTML.
• : define la cabecera del documento HTML, esta cabecera suele contener información sobre el documento que no se muestra directamente al usuario. Como por ejemplo el título de la ventana del navegador. Dentro de la cabecera podemos encontrar:
Un ejemplo de código HTML con coloreado de sintaxis
•
• : para vincular el sitio a hojas de estilo o iconos Por ejemplo:
•